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Conventional data warehouses were designed decades 
ago, when data arrived in very predictable structured 
formats. Relational data with fixed schemas was the 
norm because data sources were limited, controlled 
and changed infrequently. 

Today, data arrives in diverse forms from diverse 
sources. The rapid decrease in the cost of storing data 
and the growth in distributed systems has led to an 
explosion of machine-generated data. This includes 
data from applications, sensors, mobile devices, and 
more. 

Semi-structured data formats such as JSON, Avro, 
and others have become the de facto form in which  
this data is sent and stored. Semi-structured data is 
easy for these applications to create and capable of 
representing a wide array of information. 

Two of the key attributes that distinguish semi-
structured data from structured data are the lack of 
a fixed schema and nested data structures. Whereas 
structured data requires a fixed schema defined in 
advance, semi-structured data does not require a prior 
definition of a schema and can constantly evolve—
new attributes can be added at any time. Also unlike 
structured data, which represents data in a flat table, 
semi-structured data can contain hierarchies of nested 
information.

The flexibility of schemaless design and the ability to 
represent a wide range of information are key reasons 
that semi-structured data has become so widely used. 
New and richer information can easily be added to the 
data at any time. 

Semi-Structured Data in a Relational World
However, the flexibility and expressiveness of 
schemaless design create challenges when the data 
needs to be analyzed. As the use of semi-structured 
data formats has increased, so has the need to analyze 
that data. Although a limited amount of analysis can 
be done on semi-structured data in isolation, the most 
valuable insights come from bringing semi-structured 
data together with other data, particularly structured 
relational data. 

Relational databases were not designed to store and 
process semi-structured data. They were architected 
based on the assumption that a static schema could 

be determined in advance. That design assumption has 
made possible a wide array of optimizations—pruning, 
predicate push-down, and others—but at the cost of 
sacrificing the flexibility that schema-on-read offers.

To date, data warehouses have supported two options, 
both of which have significant drawbacks. The first 
option is to transform semi-structured data into a fixed 
schema before loading it into the data warehouse. 
This can be done by transforming the data in another 
system (e.g. an ETL tool, custom scripting, or a Hadoop 
system) or by extracting specific attributes from the 
semi-structured data at the time of loading. This 
approach creates a very fragile data pipeline that 
requires significant maintenance. Every change in the 
data—adding a new attribute, eliminating an attribute 
or adding a new level of nested information—breaks 
the data pipeline such that information is lost until the 
transformation and attribute extraction is updated to 
handle the new data structure.

The second option is to store semi-structured data as 
an uninterpreted object inside a relational table, either 
simply as a string or as a datatype that stores the object 
as a BLOB or CLOB. That approach simplifies loading 
of semi-structured data, but sacrifices performance. 
Because the semi-structured data is effectively a black 
box to the database engine, access to any part of that 
data requires a complete scan of the entire object. Even 
systems that support some type of indexing on these 
objects are only a small improvement because they 
can index at best a very limited number of attributes 
and add significant overhead for creating, storing, and 
maintaining those indexes.

Snowflake handles semi-structured data as 
a first-class database element:

* Flexible-schema datatype: load semi-
structured data without transformation

* Storage optimization: transparently  
converted to optimized internal storage format

* Query optimization: automatic database 
optimizations for fast and efficient SQL 
querying
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To avoid the complexity of these options, another 
approach has been to use a noSQL data platform to 
store and analyze semi-structured data. Systems such 
as Hadoop can adapt to the rapid evolution in semi-
structured data because they can store that data 
without requiring definition of a fixed schema. However 
they were not designed for high-performance querying, 
particularly querying that combines semi-structured and 
structured data, and come with significant complexity of 
their own. Attempts to extend noSQL data platforms to 
support relational SQL querying have come to face the 
reality that their core processing engines were simply 
not designed to provide the optimized performance 
and broad SQL support that is provided by a relational 
database.

As a result, it has been a struggle to bring together 
structured and semi-structured data and make that 
data accessible for analysis in a timely fashion.

Semi-Structured Data as a First-Class  
Database Citizen
When we architected the Snowflake data warehousing 
service, we designed it from the start to handle semi-
structured data without the trade-offs of current 
approaches. Our patent-pending approach makes it 
possible to have both the schema flexibility of semi-
structured data and the performance optimizations of 
relational data. To do that, we designed our database 
engine to handle both semi-structured data natively 
without transformation.

We started by making it possible to load semi-structured 
data in its native form, without first needing to flatten, 
transform, or extract attributes to convert it into a 
relational form. We did this by creating a new datatype 
(called VARIANT) that can handle a variety of semi-
structured data types including JSON and Avro. 

Unlike datatypes for semi-structured data in 
conventional databases, the VARIANT data type 
transparently interprets and stores semi-structured 
data efficiently. As semi-structured data is loaded, 
Snowflake automatically examines each section for 
repeated data attributes. Based on an assessment of 
potential performance improvement, Snowflake breaks 
out and stores repeated attributes independently, 
similar to the way that a columnar database stores 
individual columns independently. Snowflake makes this 

assessment independently for each section of the data 
in order to make these optimizations even when data 
attributes are present in some records but not others.

All of these optimizations occur “under the hood” such 
that, to users and queries, the data in Snowflake remains 
in semi-structured form. Snowflake provides query 
operators that allow SQL statements to reach into semi-
structured data to access individual attributes, including 
nested attributes and arrays. This makes it possible for a 
single query to access and combine both structured and 
semi-structured data in all of the ways supported by SQL. 

Snowflake also supports the creation of relational views 
on top of semi-structured data such that users and tools 
who need to see data in strict relational form, or who are 
unaware of Snowflake’s SQL extensions, can access the 
data in a form that they already understand, but without 
requiring a data pipeline that first transforms that data 
into a new relational table.

Another part of Snowflake’s patent-pending design is 
a database engine that natively understands how to 
optimize performance for queries on semi-structured 
data in the same way it optimizes queries on structured 
data, without requiring the user to transform data, 
create and manage indexes, or tune settings. As semi-
structured data is loaded and stored in optimized form 
inside Snowflake, Snowflake records metadata about 
the structure of the data and how it has been stored. 
This metadata, which Snowflake automatically updates 
even as data changes, makes it possible for Snowflake 
to optimize query plans and query execution—filtering, 
pruning, and other database optimizations can be 
applied to VARIANT data in the same way that they 
are applied to relational data. This delivers significant 
performance enhancements for queries on semi-
structured data, without manual tuning and optimization. 

Snowflake transparently optimizes semi-structured data for fast querying with SQL.
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Using Semi-Structured Data in Snowflake
In the simplest scenario, all that is needed to load 
semi-structured data is to create a table with a single 
column of type VARIANT and then execute Snowflake’s 
COPY command to load data from one or more files 
containing the semi-structured data. It is also possible 
to create tables with multiple columns that are a mix of 
standard data types and VARIANT data types, as well as 
to use commands such as INSERT and CREATE TABLE 
AS SELECT to populate tables that contain VARIANT 
columns.

To illustrate, imagine that you have a data set of orders 
stored in JSON format. A typical record could have the 
following form:

To work with this data in Snowflake, you would first 
define a table that includes a column of type VARIANT to 
use for storing this data. That table can be as simple as 
a table with a single VARIANT column, or could also have 
other columns of any type as well.  For this example, we 
will use a table named “ORDERS” with a single VARIANT 
column named “DETAIL”:

 
Data files in JSON format containing the order 
information can be loaded in parallel in a single step 
using Snowflake’s bulk COPY command. No data 
preparation, transformation, schema definition, or 
attribute extraction is required to load the data.

Accessing Individual Attributes
Once semi-structured data has been loaded into 
Snowflake, SQL extensions allow access to attributes 
within the data. Standard dot notation paths are used to 
specify attributes within a semi-structured data object, 
separated from the relational path by a single colon (‘:’). 

For example, the top-level “id” attribute in the record 
shown above would be identified as ORDERS.DETAIL:id 
and the “record_id” attribute nested within “order_
details” would be identified as ORDERS.DETAIL:order_
details.record_id. 

Arrays can also be accessed in a similar way using 
square bracket (‘[]’) notation to identify individual 
entries within an array. For example, the “id” attribute in 
the first element of the “items” array would be accessed 
as ORDERS.DETAIL:order_details.items[0].id.

Because many semi-structured data formats are not 
explicitly typed, Snowflake supports explicit casting in 
two ways: using the CAST() function, or using a trailing 
double-colon (‘::’) operator. For example, to cast the 
attribute “record_id” to an integer, a query would specify 
ORDERS.DETAIL:order_details.record_id::integer.

ORDERS

DETAIL

  { order1 }

  { order2 }

  { order3 }

       …

{
    “id”: 920384503849,
    “customer_id”: 92923,
    “name”: “online order”,
    “date_utc”: 1417203819,
    “order_details”: {
        “name”: “order”,
        “type”: “summary”,
        “record_id”: 122994,
        “items”: [
            {
                “id”: 5492,
                “name”: “jeans”,
                “model_id”: 1221,
                “brand_id”: 12,
                “price”: 123.12,
                “quantity”: 10,
                “color”: “blue”
            },
            {
                “id”: 122,
                “name”: “polo shirt”,
                “model_id”: 23,
                “brand_id”: 1,
                “price”: 34.95,
                “quantity”: 1,
                “color”: “red”
            },
        ]
    }
}



Accessing Repeated Attributes
Snowflake also provides SQL extensions that make it 
possible to transform repeated elements from an array 
into repeated records (rows). In Snowflake, we use the 
table function FLATTEN() for this purpose.  FLATTEN() 
takes an array as input and returns one row per array 
element.  

In this basic example, we use FLATTEN() to transpose 
the elements an array of numbers into individual rows:

WITH t1 AS (
  SELECT parse_json(column1) AS c1
  FROM VALUES (‘[1,2,3,4]’)
)
SELECT t2.value AS flattened_column
FROM t1, TABLE(FLATTEN(t1.c1)) t2;

------------------+
 FLATTENED_COLUMN |
------------------+
 1                |
 2                |
 3                |
 4                |
------------------+
4 rows in result

SELECT SUM(
  order_items.value:price::decimal(5,2) * 
order_items.value:quantity::int 
  ) AS “total spend”
FROM orders, 
  TABLE(FLATTEN(orders.detail:order_
details.items)) order_items
WHERE orders.detail:customer_id::int = 
92923;

CONCLUSION

Snowflake’s architecture makes it possible 
to query semi-structured data and 
structured data together using SQL. You 
can join, window, compare and calculate 
structured and semi-structured data in 
a single query. This makes it possible to 
eliminate extra systems and steps while 
realizing superior performance, simplifying 
data pipelines and reducing the time from 
when data is generated to when it can be 
accessed and analyzed.

We can use the FLATTEN() table function, 
passing in the array of items, to calculate the 
total amount a given customer spent with the 
following query:
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