
Fast, Efficient Processing
of Semi-Structured Data

2Whitepaper | Fast, Efficient Processing of Semi-Structured Data

Conventional data warehouses were designed decades
ago, when data arrived in very predictable structured
formats. Relational data with fixed schemas was the
norm because data sources were limited, controlled
and changed infrequently.

Today, data arrives in diverse forms from diverse
sources. The rapid decrease in the cost of storing data
and the growth in distributed systems has led to an
explosion of machine-generated data. This includes
data from applications, sensors, mobile devices, and
more.

Semi-structured data formats such as JSON, Avro,
and others have become the de facto form in which
this data is sent and stored. Semi-structured data is
easy for these applications to create and capable of
representing a wide array of information.

Two of the key attributes that distinguish semi-
structured data from structured data are the lack of
a fixed schema and nested data structures. Whereas
structured data requires a fixed schema defined in
advance, semi-structured data does not require a prior
definition of a schema and can constantly evolve—
new attributes can be added at any time. Also unlike
structured data, which represents data in a flat table,
semi-structured data can contain hierarchies of nested
information.

The flexibility of schemaless design and the ability to
represent a wide range of information are key reasons
that semi-structured data has become so widely used.
New and richer information can easily be added to the
data at any time.

Semi-Structured Data in a Relational World
However, the flexibility and expressiveness of
schemaless design create challenges when the data
needs to be analyzed. As the use of semi-structured
data formats has increased, so has the need to analyze
that data. Although a limited amount of analysis can
be done on semi-structured data in isolation, the most
valuable insights come from bringing semi-structured
data together with other data, particularly structured
relational data.

Relational databases were not designed to store and
process semi-structured data. They were architected
based on the assumption that a static schema could

be determined in advance. That design assumption has
made possible a wide array of optimizations—pruning,
predicate push-down, and others—but at the cost of
sacrificing the flexibility that schema-on-read offers.

To date, data warehouses have supported two options,
both of which have significant drawbacks. The first
option is to transform semi-structured data into a fixed
schema before loading it into the data warehouse.
This can be done by transforming the data in another
system (e.g. an ETL tool, custom scripting, or a Hadoop
system) or by extracting specific attributes from the
semi-structured data at the time of loading. This
approach creates a very fragile data pipeline that
requires significant maintenance. Every change in the
data—adding a new attribute, eliminating an attribute
or adding a new level of nested information—breaks
the data pipeline such that information is lost until the
transformation and attribute extraction is updated to
handle the new data structure.

The second option is to store semi-structured data as
an uninterpreted object inside a relational table, either
simply as a string or as a datatype that stores the object
as a BLOB or CLOB. That approach simplifies loading
of semi-structured data, but sacrifices performance.
Because the semi-structured data is effectively a black
box to the database engine, access to any part of that
data requires a complete scan of the entire object. Even
systems that support some type of indexing on these
objects are only a small improvement because they
can index at best a very limited number of attributes
and add significant overhead for creating, storing, and
maintaining those indexes.

Snowflake handles semi-structured data as
a first-class database element:

* Flexible-schema datatype: load semi-
structured data without transformation

* Storage optimization: transparently
converted to optimized internal storage format

* Query optimization: automatic database
optimizations for fast and efficient SQL
querying

3Whitepaper | Fast, Efficient Processing of Semi-Structured Data

To avoid the complexity of these options, another
approach has been to use a noSQL data platform to
store and analyze semi-structured data. Systems such
as Hadoop can adapt to the rapid evolution in semi-
structured data because they can store that data
without requiring definition of a fixed schema. However
they were not designed for high-performance querying,
particularly querying that combines semi-structured and
structured data, and come with significant complexity of
their own. Attempts to extend noSQL data platforms to
support relational SQL querying have come to face the
reality that their core processing engines were simply
not designed to provide the optimized performance
and broad SQL support that is provided by a relational
database.

As a result, it has been a struggle to bring together
structured and semi-structured data and make that
data accessible for analysis in a timely fashion.

Semi-Structured Data as a First-Class
Database Citizen
When we architected the Snowflake data warehousing
service, we designed it from the start to handle semi-
structured data without the trade-offs of current
approaches. Our patent-pending approach makes it
possible to have both the schema flexibility of semi-
structured data and the performance optimizations of
relational data. To do that, we designed our database
engine to handle both semi-structured data natively
without transformation.

We started by making it possible to load semi-structured
data in its native form, without first needing to flatten,
transform, or extract attributes to convert it into a
relational form. We did this by creating a new datatype
(called VARIANT) that can handle a variety of semi-
structured data types including JSON and Avro.

Unlike datatypes for semi-structured data in
conventional databases, the VARIANT data type
transparently interprets and stores semi-structured
data efficiently. As semi-structured data is loaded,
Snowflake automatically examines each section for
repeated data attributes. Based on an assessment of
potential performance improvement, Snowflake breaks
out and stores repeated attributes independently,
similar to the way that a columnar database stores
individual columns independently. Snowflake makes this

assessment independently for each section of the data
in order to make these optimizations even when data
attributes are present in some records but not others.

All of these optimizations occur “under the hood” such
that, to users and queries, the data in Snowflake remains
in semi-structured form. Snowflake provides query
operators that allow SQL statements to reach into semi-
structured data to access individual attributes, including
nested attributes and arrays. This makes it possible for a
single query to access and combine both structured and
semi-structured data in all of the ways supported by SQL.

Snowflake also supports the creation of relational views
on top of semi-structured data such that users and tools
who need to see data in strict relational form, or who are
unaware of Snowflake’s SQL extensions, can access the
data in a form that they already understand, but without
requiring a data pipeline that first transforms that data
into a new relational table.

Another part of Snowflake’s patent-pending design is
a database engine that natively understands how to
optimize performance for queries on semi-structured
data in the same way it optimizes queries on structured
data, without requiring the user to transform data,
create and manage indexes, or tune settings. As semi-
structured data is loaded and stored in optimized form
inside Snowflake, Snowflake records metadata about
the structure of the data and how it has been stored.
This metadata, which Snowflake automatically updates
even as data changes, makes it possible for Snowflake
to optimize query plans and query execution—filtering,
pruning, and other database optimizations can be
applied to VARIANT data in the same way that they
are applied to relational data. This delivers significant
performance enhancements for queries on semi-
structured data, without manual tuning and optimization.

Snowflake transparently optimizes semi-structured data for fast querying with SQL.

4Whitepaper | Fast, Efficient Processing of Semi-Structured Data

Using Semi-Structured Data in Snowflake
In the simplest scenario, all that is needed to load
semi-structured data is to create a table with a single
column of type VARIANT and then execute Snowflake’s
COPY command to load data from one or more files
containing the semi-structured data. It is also possible
to create tables with multiple columns that are a mix of
standard data types and VARIANT data types, as well as
to use commands such as INSERT and CREATE TABLE
AS SELECT to populate tables that contain VARIANT
columns.

To illustrate, imagine that you have a data set of orders
stored in JSON format. A typical record could have the
following form:

To work with this data in Snowflake, you would first
define a table that includes a column of type VARIANT to
use for storing this data. That table can be as simple as
a table with a single VARIANT column, or could also have
other columns of any type as well. For this example, we
will use a table named “ORDERS” with a single VARIANT
column named “DETAIL”:

Data files in JSON format containing the order
information can be loaded in parallel in a single step
using Snowflake’s bulk COPY command. No data
preparation, transformation, schema definition, or
attribute extraction is required to load the data.

Accessing Individual Attributes
Once semi-structured data has been loaded into
Snowflake, SQL extensions allow access to attributes
within the data. Standard dot notation paths are used to
specify attributes within a semi-structured data object,
separated from the relational path by a single colon (‘:’).

For example, the top-level “id” attribute in the record
shown above would be identified as ORDERS.DETAIL:id
and the “record_id” attribute nested within “order_
details” would be identified as ORDERS.DETAIL:order_
details.record_id.

Arrays can also be accessed in a similar way using
square bracket (‘[]’) notation to identify individual
entries within an array. For example, the “id” attribute in
the first element of the “items” array would be accessed
as ORDERS.DETAIL:order_details.items[0].id.

Because many semi-structured data formats are not
explicitly typed, Snowflake supports explicit casting in
two ways: using the CAST() function, or using a trailing
double-colon (‘::’) operator. For example, to cast the
attribute “record_id” to an integer, a query would specify
ORDERS.DETAIL:order_details.record_id::integer.

ORDERS

DETAIL

 { order1 }

 { order2 }

 { order3 }

 …

{
 “id”: 920384503849,
 “customer_id”: 92923,
 “name”: “online order”,
 “date_utc”: 1417203819,
 “order_details”: {
 “name”: “order”,
 “type”: “summary”,
 “record_id”: 122994,
 “items”: [
 {
 “id”: 5492,
 “name”: “jeans”,
 “model_id”: 1221,
 “brand_id”: 12,
 “price”: 123.12,
 “quantity”: 10,
 “color”: “blue”
 },
 {
 “id”: 122,
 “name”: “polo shirt”,
 “model_id”: 23,
 “brand_id”: 1,
 “price”: 34.95,
 “quantity”: 1,
 “color”: “red”
 },
]
 }
}

Accessing Repeated Attributes
Snowflake also provides SQL extensions that make it
possible to transform repeated elements from an array
into repeated records (rows). In Snowflake, we use the
table function FLATTEN() for this purpose. FLATTEN()
takes an array as input and returns one row per array
element.

In this basic example, we use FLATTEN() to transpose
the elements an array of numbers into individual rows:

WITH t1 AS (
 SELECT parse_json(column1) AS c1
 FROM VALUES (‘[1,2,3,4]’)
)
SELECT t2.value AS flattened_column
FROM t1, TABLE(FLATTEN(t1.c1)) t2;

------------------+
 FLATTENED_COLUMN |
------------------+
 1 |
 2 |
 3 |
 4 |
------------------+
4 rows in result

SELECT SUM(
 order_items.value:price::decimal(5,2) *
order_items.value:quantity::int
) AS “total spend”
FROM orders,
 TABLE(FLATTEN(orders.detail:order_
details.items)) order_items
WHERE orders.detail:customer_id::int =
92923;

CONCLUSION

Snowflake’s architecture makes it possible
to query semi-structured data and
structured data together using SQL. You
can join, window, compare and calculate
structured and semi-structured data in
a single query. This makes it possible to
eliminate extra systems and steps while
realizing superior performance, simplifying
data pipelines and reducing the time from
when data is generated to when it can be
accessed and analyzed.

We can use the FLATTEN() table function,
passing in the array of items, to calculate the
total amount a given customer spent with the
following query:

Whitepaper | Fast, Efficient Processing of Semi-Structured Data

Snowflake Computing, the cloud data warehousing company, has reinvented the data warehouse for the
cloud and today’s data. The Snowflake Elastic Data Warehouse is built from the cloud up with a patent-
pending new architecture that delivers the power of data warehousing, the flexibility of big data platforms
and the elasticity of the cloud – at a fraction of the cost of traditional solutions. The company is backed by
leading investors including Altimeter Capital, Redpoint Ventures, Sutter Hill Ventures and Wing Ventures.
Snowflake is headquartered in Silicon Valley and can be found online at snowflake.net.

About Snowflake

Copyright © 2015 Snowflake Computing, Inc. All rights reserved.
SNOWFLAKE COMPUTING, the Snowflake Logo, and SNOWFLAKE ELASTIC
DATA WAREHOUSE are trademarks of Snowflake Computing, Inc. www.snowflake.net | @SnowflakeDB
WP_SEMI_1_0_062015

